Summary on the Auto Composer
Module

Hanrui Zhang, Geek 30
November 12, 2014

1 Introduction

The Auto Composer (AM) is a module of the Scoreur Project, aimming at a
completely automatic implementation to mimic existing melodies as well as to
generate new ones. It bases on ideas from machine learning, uses Hidden Markov
Model to simulate the logic of sequences of notes, which is quite efficient both
theoretically and pratically.

2 Hidden Markov Model

Hidden Markov model (a.k.a HMM) is a method to model arbitrary random
procedures. It assumes that the procedure to be modeled is generated by some
hidden Markov chain, each state of the Markov chain induces a distribution
on all the possible outputs. At each step, the Markov chain itself evolves, and
produces an output recording to the distribution generated by its current state.
It is obvious that HMM is an outstanding choice to handle problems related to
sequences over time, e.g., rhythms.

The model could be trained by adjusting the model parameters, including
parameters of the Markov chain, distributions induced by each state, and the
initial distribution on the states of the Markov chain. Training is implemented
by iteration, according to some formulas proved by the method of Lagrangian
Multiplier, whose proof can be found in any related article. All the calculation
can be done using basic recursional relationship between quantities.

Classification can also be done with HMM, by calculating and judging the
probability of a string to appear as the output of the model among all possible
strings of the same length. The probability can be calculated using dynamic
programming.



3 Methods Used to Compose

The idea of the AM module is to model existing rhythms by using them to
train an HMM, and then generate new rhythms from the trained HMM. We
translate a piece of rhythm into a sequence of notes (with the same lasting
time), use the sequences to train a discrete time HMM. The hidden states of
the HMM are supposed to contain information of orders and lasting times of
the notes, as well as details of chords and music bars.

Once the training is done, the idea to generate rhythms becomes quite simple:
let the trained model evolve itself, the output of a particular length is then our
desired rhythm. In fact, it is also natural to pick the sequence with the maximal
possibility to be generated, which can be done using dynamic programming. It
is, in some sense, the most similar rhythm to the original ones. However, there
is only one piece of such rhythm. As we may need multiple different sequences,
I chose to generate such sequences randomly.

Finally, the AM module communicates with a web server by Xiaogi Chen to
play the generated rhythms.

4 Parallelization and Scaling

As training on multiple strings are somehow independent, it can be done
parallelly. In my implementation OpenMP was chosen, for its simplicity, and
that I'm so lazy. Idealistically, using c cores simultaneously will reduce the time
needed by c times.

For a sufficiently long string, the probability that it appears will be so small
that exceeds precision limit of any possible machine. We scale the temporary
variables here to avoid precision issues. In short, when we calculate the possi-
bility of its prefix, we normalize this possibility and record the logarithm of the
coefficient. When we are done, logarithm of the probability could be calculated
by simply summing up the records at each step.

5 Efficiency of the AM

HMM, in my opinion, is a pretty fast model. Suppose that we have a HMM
model with n hidden states and m possible outputs. A single iteration of training
on a string of length ¢ takes O(tn?) time. In practice, the parameters often
converge after about 100 times of iteration. In my implementation, since we are
to generate short pieces of rhythms, which does not contain much complicated
structures, n is set to 100, and the length of the working part of any song is not
likely to exceed 1000, which means that we can finish almost any training on a



single song in 10 seconds. When there are multiple songs to train on, we can
use multiple threads to efficiently reduce the required time.

When we have done the training part, it seems quite easy to generate rhythms
using the trained HMM. To get a piece of rhythm with a length of [, we need
only O(I(n +m)) time, which is often much smaller than the time used to train
the model. Still, we can use multiple threads to generate multiple pieces of
rhythms simultaneously.



